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ABSTRACT 

The purpose of this work was to develop an accurate, rapid method for determining the 
constants A, B, and C of the Antoine equation, log p = A - B/(C + t) which relates the 
vapor pressure of a liquid to temperature. The procedure makes use of a weighted least 
squares curve fit with an iterative computation. The computation has been programmed in 

BASIC for use on a microcomputer, and the details of the program and its use are presented. 
A comparison of the results of the present method with published values for several 
compounds indicates that the constants are determined more accurately by the present 

method than by other methods. 

INTRODUCTION 

Some of the most fundamental thermodynamic properties of liquids are 
obtained from vapor pressure data, and the most reliable equation for 
representing vapor pressure as a function of temperature is the Antoine 
equation [1,2]. That equation can be written as 

logp=A -A (1) 

where A, B, and C are constants characteristic of the liquid, p is the vapor 
pressure (Torr), and t is the temperature (“C). Compilations of A, B, and C 
values are available [3-51 and these constants are used in the computation of 
other properties, such as the cohesion energy and heat of vaporization of the 
liquid [6,7]. Therefore, the Antoine equation is extremely useful in describing 
a variety of thermodynamic properties. 

Typically, the vapor pressure of a liquid is measured at different tempera- 
tures, or the boiling point is measured at different pressures. From these 
data, the constants A, B, and C must be determined. Many of the tabulated 
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values have been determined by means of a graphical method which is based 
on the determination of the boiling points at three different pressures [l]. 
When employing such a method, the data must be very accurate, or sizeable 
errors will result in the calculated Antoine constants. It is preferable to 
employ a least squares best fit procedure in order to minimize errors in the 
calculated constants. It is also important to use many more than three [p, t] 

data pairs. Large compilations of vapor pressure data are readily available 
for many compounds [8,9]. However, a least squares best fit is difficult to 
obtain, because the Antoine equation is not linear and non-linear least 
squares procedures are not widely available for use on a programmable 
calculator or microcomputer. This is unfortunate, since programmable calcu- 
lators and microcomputers are widely available and have sufficient calcula- 
tion power to handle the computation. 

Trump [2] has shown the superiority of the Antoine equation over the 
3-term Chebyshev polynomial equation. Trump’s program was based on the 
method of Willingham et al. [lo]. We show the superiority of the present 
method to that of Willingham et al. [lo]. The method presented here is easily 
programmed in BASIC for use on a microcomputer and is also easily 
programmed on a pocket-sized programmable calculator. In this paper, we 
present the details of a computational method for determining the Antoine 
constants by a weighted non-linear least squares best fit and a program 
written in BASIC. The present computational method can utilize a large 
number of [p, t] data pairs. As previously mentioned, several physical 
properties have a dependence on temperature given by the form of eqn. (1). 
Therefore, the present method is a powerful curve fitting procedure for 
several physical properties. 

PRINCIPLES 

If we let y. = log( pi) and & = l/( C + t;), then eqn. (1) becomes 

q=A-B& (2) 

Let Q be the square of the difference between the x value and the right hand 
side of eqn. (2), then 

Q;=w,(r,-A+B&)* (3) 

where w, = wl[ q ln(lO)]* and w,’ = 1 for all i (for equal weighting of data). 
Alternatively, w; could be an integer value greater than one, if replicate 
pressure values were determined at certain temperatures. Yet another choice 
for w: could be l/(variance in pressure), if three or more replicate pressure 
values exist at certain temperatures. The choice of weighting factors, w,‘, is a 
matter of preference. Equation (3) represents the sum of squares of dif- 
ferences between the best fit curve through the [p, t] data pairs and the 



actual data points. The weighting factors will be described further 
this paper. 

Expansion of eqn. (3) and representation in terms of the sums of 
ual errors gives 
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individ- 

Q = Cw,y,* - 2A Cw;y, + 28 Cw,yB; - 2AB CwJ3, + A* Cw, + B*w,@ (4) 

In order for the errors to be minimized, we derive the expression for the 
partial derivative of Q with respect to A and set the resulting expression 
equal to zero 

$j=O= -Cw,Y,-BCw;~,+ACw; (5) 

All summations are from 1 to N, where N is the number of [ p, t] data pairs. 
Solving eqn. (5) for A yields 

A = Cw;r, + B WP, 

CW, 
(6) 

An expression for the partial derivative of Q with respect to B is obtained in 
a similar fashion 

g = 0 = Cw,r,B; - A Cw;& + B CwJ, (7) 

Solving eqn. (7) for B yields 

B = A %P; - WV$ 

GP2 
(8) 

Each of the variables, A (eqn. 6) and B (eqn. 8) are in terms of the other and 
also in terms of C. Therefore, eqns. (6) and (8) cannot be used directly to 
compute the constants A, B, and C. An expression for the partial derivative 
of Q with respect to C is equated with zero 

g = 0 = $(2B Cw,r,B, - 2AB Cw;& + B Cw;@) (9) 

which yields 

0 = - Cw, y,B; + A Cw;# - B Cw;p; ( 10) 
Equations (5), (7), and (10) are the necessary equations for the computation 
of the Antoine constants from the [p, t] data. 

Solving eqn. (10) for B yields 

Equating the right hand side of eqns. (8) and (11) yields 

A Cw;@ - Cw,qP,’ A CwJ3; - Cw,r,& 

xw,p,’ = CW,PZ (12) 
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Solving eqn. (12) for A yields 

A = (CYP, cww) - (cw;m; Cw;P,3) 
(WV Cw;P,2) - @WA Cw,P;‘) 03) 

Employing eqn. (13) the least squares best fit value of A may be computed 
for any value of C. 

In a similar manner, solving eqn. (10) for A and equating the resulting 
expression with the right hand side of eqn. (7) yields 

B = Ccwl cwlY,P,Z) - (cw,Y, cwiP12) 

(SP; Cw;P,2) - (cw, CYP;‘) 
(14) 

We now have two equations to compute A and B which are functions of the 
value of C (in terms of &) and the [p, t] data only. These equations (13 and 
14) are used in the iterative procedure. The relationships in eqns. (13) and 
(14), between A, B, and C, are not obvious from the method of Willingham 
et al. [lo]. 

In the present method, a value is assumed for C and the values of A and B 
are calculated from eqns. (13) and (14), respectively. The iterative procedure 
employs eqn. (6) in the form 

A _ Cw;y, + B Cw;/3, 
cw; =O (15) 

The left hand side of eqn. (15) will equal zero only when the value of C is 
exactly the best fit value. Since this is an iterative procedure, the value of C 
will never become exactly equal to the best fit value. Therefore, eqn. (15) is 
used in the form 

A_hY+BSP; s 
= 

CW, J (16) 

wherej is the iteration (0, 1, 2,. . .), 6, is thus a measure of the accuracy of C. 
However, neither the sign nor magnitude of SJ is used directly as a criterion 
of convergence. 

CONVERGENCE 

Previous least squares methods for determining the Antoine constants 
involve one or more undesirable features. The method of Willingham et al. 
[lo] requires initial estimates of A, B and C, and correction factors are then 
computed to increment the constants to approximately their optimum val- 
ues. This method also utilizes weighting factors which are calculated from 
average A and B values for many compounds; this is not desirable. 

Another commonly used method of determining A, B, and C values 
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utilizes matrices and also requires initial values of A, B, and C to begin its 
calculation [6,10]. This method yields matrices of variance and covariance 
values, and is applicable to solving many types of equations, especially 
non-linear equations. This method provides standard errors for the com- 
puted values. However, it suffers because the accuracy of its results depends 
on highly accurate initial estimations of A, B, and C, which may be difficult 
to estimate accurately. 

The present method is a weighted non-linear least squares best fit method 
that does not use initial values of A or B, does not utilize matrices, does not 
require correction factors, and does not compute standard error values. Least 
squares best fit values for A and B are calculated exactly for any value of C. 
The initial value of C is estimated systematically and may be a very crude 
estimation. Since most liquids have C values in the range of 200-250, it is 
easy to select an initial C value which will be of the order of magnitude of 
the best fit value (final value). We have determined that a reasonable initial 
value of C is 200 for most compounds, and that a reasonable increment 
value for C, AC, is 100. 

One of the equations used in the convergence procedure, eqn. (16) has 
negative values for C values less than the least squares best fit C value, and 
positive values for C values greater than the least squares best fit C value. 
Should C ever become exactly the best fit value, eqn. (16) will equal zero. 

The procedure for determining the correct value of C involves making an 
initial estimate of C (usually 200), C,, and then computing the value of 6,. If 
the initial estimate of C is below the final best fit value, then i3, will have a 
negative value. However, if 8, has a positive value, then the initial estimate of 
C was too high and the procedure halves the initial estimate of C and restarts 
the computation. Provided that 8, was a negative number, we increment the 
trial value of C and compute the corresponding 6 value. If the S value is still 
negative, the trial value of C is once again increased by adding AC to the 
previous value. When the 6 value finally becomes positive, then the estimate 
of C is greater than the best fit value. Therefore, one has both an upper and 
a lower boundary on the best fit value of C; restated, an interval, whose 
upper and lower limits are known, is known to contain the best fit value of 
L. 

We next assume that the interval is sufficiently small that the 8 values, 
which correspond to the C values in the interval, form a straight line. If they 
actually form a straight line, then the next iteration will yield the best fit 
value of C. However, in practice, the 6 values, the error values that 
correspond to the C values, fit some curvilinear function within the interval. 
Therefore, several iterations will be necessary to successively reduce the size 
of the interval known to contain the best fit C value until the error values 
form a straight line through the best fit C value. We assume that the best fit 
value of C lies proportionally between the upper and lower limits of the 
interval as determined by the 8, values. Thus if S,_, is the lower limit of the 
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interval and the upper limit is aj, then next approximation for C, C,+,, is 
computed from eqn. (17) 

C J+' 
=~-([6,/(6,-sj-,)](c,-c,_,)) (17) 

The method converges when the value of the constant A changes by less than 
a pre-determined amount. We have determined that 1.0 x 10e5 is a reasona- 
ble accuracy limit for A. However, this may be altered to suit the accuracy 
requirements, or to speed up the calculations. Therefore, when the value of A 
changes by less than the absolute value of 1.0 X lop5 from one iteration to 
the next, the method has converged. However, if the change in the magni- 
tude of A is greater than 1.0 X 10e5, then either the lower or upper limit of 
the interval is re-defined. In particular, if Sjil is a negative number, then the 
lower limit on C, C,_ ,, is set equal to C,+,. Conversely, if the SJ+ 1 is a 
positive number, then the upper limit on C, C,, is set equal to C,,,. In either 

case, CJ+2 and 8j+2 are calculated using eqn. (17) and the re-defined limits on 
the interval. CJf2 will become the new value for C, + 1, and SJ + 2 the new value 
for aj+, in eqn. (17) respectively. This method is about five times faster than 
halving the interval in search of the best fit C value. 

The method in this case is applied to an equation that is logarithmic in p. 

Therefore, the resulting sum of squared errors (SSE) in p, rather than log( p), 

will not yield the least squares result. Deming [ll] described a procedure that 
corrects for the logarithmic p values by using weighting factors which are 
functions of the p values. We have employed Deming’s procedure in this 
method. When fitting a least squares solution in log(p), weighting factors 
equal to [ p ln(lO)]* will result in an equal weighting of data and yield a true 
least squares result [ll]. Without Deming’s procedure, the present method 
yields SSE values which are not consistently lower than other methods [6,10]. 
However, using Deming’s procedure, the present method gives a consistently 
smaller SSE value than any other method, for any given data set. While it is 
true that other methods could yield results as accurate as the present 
method, such methods require extremely accurate initial values of all Antoine 
constants to be competitive, and in practice, the present method is con- 
sistently superior. 

While the present method does not compute standard error values of the 
Antoine constants, it could be used to determine highly accurate constant 
values and then the same values used as initial estimates for another method 
which does compute the standard error values. The fact that the present 
method uses only a value of C as input with the [p, t] data, and that it 
makes use of weighted least squares, makes it the simplest and most accurate 
method available for determining Antoine constants. 
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THE PROGRAM 

The program to implement the present method (algorithm) was written in 
BASIC for use on a microcomputer. The program has been run on a TRS-80 
Model I microcomputer and minor modifications may be required for the 
program to be run on other brands of microcomputers. In order to minimize 
roundoff errors, the computation is performed in double precision. This is 
especially important for the logarithmic values of p. The program inputs 
data from pre-established data files by “merging” such files with the main 
program prior to execution. The program listing is thoroughly commented 
and will not be described further. 

The format for establishing the data files is as follows: 
(1) the first line number must be larger than the last line number of the 

program; 
(2) the first line contains the number of data points, N, to be input by the 

program; 
(3) the next N lines contain one temperature value, per line, and its 

corresponding pressure and weighting values; 
(4) the next line contains the initial estimate of C, the value for increment- 

ing C, the reported A value, the reported B value, and finally, the reported C 
value; 

(5) the last line contains a string variable which is the number of the 
compound. 
A complete listing of the program which has been merged with a sample 
data set is given in the Appendix. 

The results of the data analysis are printed as follows. The name of the 
compound is printed first. Next, labels for six columns of numbers are 
printed, followed by N rows of six numbers. Column one, labeled “T(I)“, 
contains the values of temperature (“C), which were contained in the original 
data set. Column two, labeled “P(I)“, contains the pressure values (Torr), 
which correspond to the temperature values in column one. Column three 
contains the values of pressure predicted by the present method for the 
corresponding temperature values in column one. Column four contains the 
differences between columns two and three, and represents the residual 
errors to be squared and summed (SUM OF SQUARES LSM). Column five 
contains the values of pressure predicted by the reported values of the 
Antoine constants. Column six contains the differences between columns 
four and five, and represents the residual errors to be squared and summed 
(SUM OF SQUARED REP). 

Next, the boiling point of the compound at 760 Torr, based on the results 
of the present method, is printed; this is followed by the boiling point based 
on the reported values of the Antoine constants. The values of A, B, and C, 
which result from the present method, and then the reported values of A, B, 
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and C, are printed. Finally, the sum of squared errors for the present method 
and that for the reported constants are printed. 

RESULTS AND DISCUSSION 

The method described here has been tested with the sets of data reported 
by Willingham et al. [lo], and by Meyer et al. [6,7]. These data represent the 
results of high precision vapor pressure measurements and provide a critical 
test of data fitted to the Antoine equation. Table 1 shows the results 
obtained for data reported for m-xylene [lo]. The results shown indicate that 
the present method is in excellent agreement with that of Willingham et al. 
[lo]. Although six digits are shown in each of the constants reported by 
Willingham et al. [lo], the full number of digits given in the original report 
[lo] were used in computing SUM OF SQUARES REP. Table 1 shows that 
a smaller SSE was obtained using the constant values calculated by the 
present method. Similar results have been found with other data, and Table 
2 shows a summary of the results obtained. In every case, the SSE from the 

TABLE 1 

Results obtained for m-xylene using published data (ref. 10) 

J-(I) RI) P-LSM DEL-P P-REP DEL-P REP 

140.041 779.360 779.338 - 0.022 779.346 -0.014 

139.493 767.950 768.004 0.054 768.011 0.061 

138.869 755.250 755.256 0.006 755.262 0.012 

138.314 744.060 744.059 - 0.001 744.064 0.004 

137.713 732.090 732.082 - 0.008 732.086 - 0.004 

132.128 627.930 627.910 - 0.020 627.908 - 0.022 

124.205 500.700 500.677 - 0.023 500.670 - 0.030 

116.896 402.440 402.411 i 0.029 402.402 - 0.038 

110.041 324.940 324.931 - 0.009 324.922 -0.018 

103.396 261.750 261.778 0.028 261.772 0.022 

97.870 217.170 217.190 0.020 217.185 0.015 

91.860 175.890 175.923 0.033 175.921 0.031 

87.367 149.440 149.460 0.020 149.459 0.019 

82.522 124.670 124.676 0.006 124.676 0.006 

77.747 103.650 103.662 0.012 103.664 0.014 

73.558 87.740 87.72? -0.018 87.724 - 0.016 

70.458 77.280 77.281 0.001 77.284 0.004 

67.123 67.230 67.223 - 0.007 67.226 - 0.004 

63.436 57.410 57.395 -0.015 57.399 -0.011 

59.203 47.670 47.620 - 0.050 47.624 - 0.046 

EST. B.P. LSM>139.1022. EST. B.P. REP>139.1019. 

A COMPUTED > 7.00172, B COMPUTED > 1457.11, C COMPUTED > 214.488. 

A REPORTED > 7.00343. B REPORTED > 1458.21, C REPORTED > 214.609. 

SUM OF SQUARES LSM = O.l139E-01. SUM OF SQL’ARES REP = O.l194E-01. 
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present method is smaller than that obtained using the reported values of A, 
B, and C. 

It is clear that the program described here provides a simple and accurate 
method for fitting data to the Antoine equation which is suitable for a 
microcomputer. Further, the method described here requires no initial esti- 
mation of the A or B values as input. 

APPENDIX 

10 DEFDBL A, B, C, L, P, R, S, T, W, X, Y, 2 
20 ' 
30 'READ NUMBER OF DATA PAIR TO INPUT 
40 READ NP 
50 ' 
60 'DIMENSION ARRAYS 
70 DIM LP(NP), P(NP), PltNP), P2(NP), P3(NP), P4(NP), 

T(NP), W(NP) 
80 ' 
90 'CLEAR VIDEO SCREEN 
100 CLS 
110 ' 
120 'READ TEMPERATURE, PRESSURE, WEIGHTING FACTOK 
130 xx=0 
140 FOR I=1 TO NP 
150 READ T(I), P(I), W(I) 
160 ' 
170 'APPLY DEMING'S PROCEDURE 
180 w~I)=w~I~*~P~I~*2.3025850930~"0*2.3025850930~ 
190 ’ 
200 XX=XX+W(I) 
210 NEXT I 
220 ' 
230 ' 
240 'COMPUTE DOUBLE PRECISION LOG (PRESSURE) VALUES 
250 FOR I=1 TO NP 
260 Z=P(I) 
270 GOSUB 1330 
280 LPCI,=Cz2/2.3025850930) 
290 NEXT I 
300 ' 
310 'READ INITIAL C VALUE, INCREMENT VALUE FOR C 
320 READ R5, R9 
330 R2=R5 
340 ' 
350 'READ REPORTED A, B, AND C VALUES 
360 READ QA, QB, QC 
370 ' 
380 'READ NAME OF COMPOUND AND OUTPUT TO PRINTEK 
390 READ G$:LPRINTG$:LPRINT:LPRINT 
400 ' 
410 ' 
420 'BEGIN MAIN PROGRAM, ITERATION ZERO 
430 'INCREMENT C UNTI.L EQUATION 16 YIELDS 
440 'A POSITIVE NUMBER 
450 ' 
460 Al=O:IT=O 
470 ' 
480 'COMPUTE SUMMATIONS 
490 GOSUB 930 
500 ' 
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510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 

'DISPLAY INTERMEDIATE RESULTS 
GOSUB 1230 
I 

'WHILE EQ. 16 YIELDS NEGATIVE NUMBERS, LOOP TO 460 
'SET "OLD A" EQUAL TO "NEW A" 
IF Rl#<0 THEN R5=R2: R2=R2+R9: R6=Rl: Al=AN: IT=IT+l: GOT0 490 
I 

'ESTABLISH UPPER LIMIT FOR INTERVAL 
R7=R2:R8=Rl 
I 

'IF INITIAL C VALUE WAS TOO LARGE, DIVIDE THE 
'CURRENT C VALUE BY 2 AND TRY AGAIN 
IF Al=0 THEN RS=R5/2:R2=R5:Rg=R5:GOTO 490 
1 

'TEST FOR CONVERGENCE 
IF ABS(AN-Al)<lE-05 THEN 1430 
I 

'ITERATE ONCE AGAIN 
IT=IT+l 
1 

'SET "OLD A" EQUAL 'TO "NEW A" 
Al=AN 
1 

'DISPLAY INTERMEDIATE RESULTS 
GOSUB 1230 
I 

'COMPUTE EQUATION 17 
R2=R7-((R8/(R8-R6))*(R7-R5)) 
1 

'COMPUTE SUMMATIONS 
GOSUB 930 
1 

'IF EQ. 16 YIELDS A POSITIVE NUMBER, THEN 
IRE-DEFINE THE UPPER LIMIT OF THE INTERVAL 
IF Rl>0 THEN R7=R2:R8=Rl:GOTO 660 
1 

'EQ. 16 YIELDED A NEGATIVE NUMBER, RE-DEFINE 
'LOWER LIMIT OF THE INTERVAL 
R5=R2:R6=Rl:GOTO 660 
t 
1 

'COMPUTE SUMMATIONS 
Sl=O:S2=O:S3=O:S4=O:S5=O:S6=0 
FOR I-l TO NP 
B=l/(R2+T(I)) 
Sl=Sl+B*W(I) 
S2=S2+B*B*W(I) 
S3=S3+B*B*B*W(I) 
S4=S4+LP(I)*B*W(I) 

1000 S5=SS+LP(I)*B*B*W(I) 
1010 S6=S6+LP(I)*W(I) 
1020 NEXT I 
1030 ' 
1040 'COMPUTE EQUATION 13 
1050 ?I=(G~*SS-S~*S~)/(S~*S~-S~*S~)) 
1060 ' 
1070 'COMPUTE EQUATION 14 
1080 B=((XX*S5-S6*S2)/(Sl*S2-XX*S3)) 
1090 ' 
1100 'COMPUTE EQUATION 16 
1110 Rl=(A*XX)-(S6+B*Sl) 
1120 ' 
1130 'SET "NEW A" EQUAL TO EQUATION 13 
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1140 AN=A 
1150 ' 
1160 RETURN 
1170 ' 
1180 ' 
1190 ' 
1200 'DISPLAY INTERMEDIATE RESULTS AFTER 
1210 'EACH ITERATION 
1220 ' 
1230 CLS:A!=A:B!=B:C!=R2 
1240 PRINT"APPROXIMATE VALUES: ":PRINT" 
1250 PRINT"A = ";A! 
1260 PRINT"B = w ;B! 
1270 PRINT"C = ";C! 
1280 PRINT" ":PRINT"ITERATIDN #";IT 
1290 RETURN 
1300 ' 
1310 'LINES 1330 THROUGH 1400 COMPUTE DOUBLE 
1320 'PRECISION LOG (PRESSURE) VALUES 
1330 Z2=LOG(Z):IO=O:I2=SGN(Z2):IF 12<0 THEN Z=l/Z 
1340 IF zc1.065 THEN 1350 ELSE GOSUB 1390:Z=Z3:10=10+1:G0T01340 
1350 Z=(Z-l)/(Z+l):Z2=Z*Z:Z3=Z:I3=9:GOSUB14OO:Z=Z+Z 
1360 IF IO=0 THEN 1380 
1370 FOR J=l TO IO:Z=Z+Z:NEXT J 
1380 Z2=Z*I2:RETURN 
1390 Z3=SQR(Z):Z3=(Z3+Z/Z3)/2:23=(23+2/23)/2:RETURN 
1400 Z2=Z*Z:FOR K=3 TO ABS(I3) STEP2:Z3=SGN(I3)*Z3*Z2:Z=Z+Z3/K: 

NEXT:RETURN 
1410 ' 
1420 ' COMPUTE BOILING POINT PER LEAST SQUARES CONSTANTS 
1430 BlP=-((B/(2.8808136-A))+R2) 
1440 ' 
1450 ' 
1460 ' COMPUTE BOILING POINT PER REPORTED CONSTANTS 
1470 B2P=-((QB/(2.8808136-QA))+QC) 
1480 ' 
1490 ' 

1500 GOSUB 1870 
1510 LPRINT" II 
1520 LPRINT" II 

1530 ' 
1540 'PRINT BOILING POINTS 
1550 LPRINT"EST. B.P. LSM > "; 
1560 LPRINT USING"####.####";BlP 
1570 LPRINT"EST. B.P. REP > "; 
1580 LPRINT USING"####.####";B2P 
1590 ' 
1600 A!=A:B!=B:C!=R2 
1610 LPRINT" II 

1620 ' 
1630 'PRINT LEAST SQUARES CONSTANTS 
1640 LPRINT"A COMPUTED > ";A! 
1650 LPRINT"B COMPUTED > ";B! 
1660 LPRINT"C COMPUTED > ";C! 
1670 ' 
1680 LPRINT" II 

1690 ' 
1700 'PRINT REPORTED CONSTANTS 
1710 LPRINT"A REPORTED > ";QA 
1720 LPRINT"B REPORTED > ";QB 
1730 LPRINT"C REPORTED > ":QC 
1740 ' 
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1750 LPRINT" II 

1760 ' 
1770 'PRINT SUM OF SQUARED ERRORS (SSE) 
1780 LPRINT"SUM OF SQUARES LSM = "; 
1790 LPRINT USING"#.####[[[[";CSSE 
1800 LPRINT"SUM OF SQUARES REP = "; 
1810 LPRINT USING"#.####[[[[";RSSE 
1820 ' 
1830 'END PROGRAM 
1840 END 
1850 ' 
1860 'PRINT HEADINGS 
1870 LPRINT" II 

1880 LPRINT"T(I)"- 
1890 LPRINT STRINk8, 32); 
1900 LPRINT"P(1)" 
1910 LPRINT STRIN&8, 32); 
1920 LPRINT"P-LSM" 
1930 LPRINT STRING&g, 32); 
1940 LPRINT"DEL-P"- 
1950 LPRINT STRINGi(5, 32); 
1960 LPRINT'P-REP"' 
1970 LPRINT STRING&g, 32); 
1980 LPRINT"DEL-P REP" 
1990 LPRINT" w 

2000 ' 
2010 'PRINT DATA, RESIDUALS, AND COMPU'TE SSE 
2020 FOR I=1 TO NP 
2030 Pl(I)=A-(B/(R2+T(I))) 
2040 Pl(I)=EXP(2.3025B5*P10) 
2050 P2(I)=Pl(I)-P(I) 
2060 CSSE=CSSE+P2(I)*P2(1) 
2070 ' 
2080 P3(I)=QA-(QB/(QC+T(I))) 
2090 P3(I)=EXP(2.302585*P3(1)) 
2100 P4(I)=P3(I)-P(I) 
2110 RSSE=RSSE+P4(I)*P4(1) 
2120 ' 
2130 ' 
2140 'PRINT DATA AND RESIDUALS 
2150 LPRINT USING"###.###";T(I); 
2160 LPRINT STRING$(S, 32); 
2170 LPRINT USING"###.###";P(I); 
2180 LPRINT STRING$(5, 32); 
2190 LPRINT IJSING"###.###";Pl~I,; 
2200 LPRINT STRING$(S, 32); 
2210 LPRINT USING"###.###";P2(1); 
2220 LPRINT STRING$(S, 32); 
2230 LPRINT USING"###.###";P3(1,; 
2240 LPRINT STRING$(S, 32); 
2250 LPRINT USING"###.###";P4(1) 
2260 NEXT I 
2270 RETURN 
2280 ' 
2290 'MERGE DATA FOLLOWING THIS LINE 
2300 ' 
2310 ' 
2320 DATA 12 
2330 DATA 66.698,8.586,1 
2340 DATA 74.991,12.056,1 
2350 DATA 80.908,15.127,1 
2360 DATA 84.853,17.536,1 
2370 DATA 96.299,26.362,1 
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2380 DATA 101.748,31.678,1 
2390 DATA 108.096,38.933,1 
2400 DATA 115.252,48.667,1 
2410 DATA 122.359,60.166,1 
2420 DATA 129.316,73.424,1 
2430 DATA 136.104,88.494,1 
2440 DATA 142.402,104.574,1 
2450 DATA 200,100,6.069071,1450.044,215.6663 
2460 DA'I'A CYCLOPENTANONE 
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